THE BEST SIDE OF المعين

The best Side of المعين

The best Side of المعين

Blog Article

المعين هو شكل هندسي يتكون من أربعة أضلاع أو جوانب لها نفس الطول، فمعرفة قياس طول ضلع واحد فيها يعني معرفة جميع أطوال الأضلاع الأخرى لأنها تكون بنفس القياس، كما تكون أضلاعها المتقابلة متوازية، كما يوجد للمعين ارتفاع يمكن قياسه من طول الخط الواصل بين منتصف الضلعين المتقابلين، ويتميز المعين بوجود قطرين أيضًا، ويكون قياسهما عبارة عن طول الخطوط التي تصل بين الزوايا المتقابلة مع بعضها البعض في المعين، ويتميز القطران بأنّه يتعامد كل منهما على الآخر كما أنهما يُنصّفان الزوايا التي يمران من خلالهما، أما زوايا المعين الأربعة فإن كل زاويتين متقابلتين في المعين متساويتين في القياس، حيث يكون زوجين من الزوايا حادتي القياس بينما الزوجين الآخرين منفرجتي القياس، أما إذا كانت إحدى زواياه قائمة فإنّه يتحول إلى مربع، وفيما يأتي ذكر أبرز طرق حساب المعين.[٢]

استخدامُك هذا الموقع هو موافقةٌ على شروط الاستخدام وسياسة الخصوصية. ويكيبيديا ® هي علامة تجارية مسجلة لمؤسسة ويكيميديا، وهي منظمة غير ربحية.

يمكن رسم دائرة داخل المعين يمس محيطها أضلاع المعين الأربعة، وتكون:

نعم ، كل مربع هو معين ذو أربع زوايا قائمة ، لكن كل معين ليس بالضرورة مربعا.

المربع: أقطاره متساوية في الطول، كما أنها تنصف بعضها البعض في زاوية قائمة.[٣]

نحن نستخدم ملفات تعريف الارتباط "الكوكيز" لتحسين تجربة استخدام ويكي هاو. باستخدام للموقع، أنت توافق على سياستنا الخاصة بالكوكيز .إعدادات ملفات تعريف الارتباط

القانون الثاني: مساحة المعين = ارتفاع المعين × طول قاعدة المعين، بحيث أنّ ارتفاع المعين: هي طول المسافة العمودية بين أي ضلعين متقابلين.

المعين هو عبارةٌ عن شكلٍ هندسيٍّ مضلع ثنائي الأبعاد، يُستخدم في الكثير من المجالات والتطبيقات في مجال الرياضيات website وفي حياتنا العلمية والعملية، وتُعرف مساحة المعيّن على أنها المساحة المحدودة بأضلاع المعين، أي داخل محيط المعين، ويوجد عدة قوانين وطرقٍ رياضيةٍ لحساب مساحة المعين سوف نشرحها بالتفصيل في هذا المقال مع ذكر بعض الأمثلة.

المؤسسة الاردنية الاقتصادية والاجتماعية للمتقاعدين العسكريين والمحاربين القدماء

الحساب بمعرفة طول القاعدة والارتفاع، عن طريق القانون التالي مساحة المعين = طول القاعدة* الارتفاع

و هو شكل رباعيّ الأضلاع، أضلاعه متساوية، والأضلاع المتقابلة متوازية، لكنّ زواياه غير متساوية، حيث إنّ كل زاويتين متقابلتين متساويتين فقط، بينما المربّع جميع زواياه قائمة، ومتساوية (تسعون درجة). عند تنصيف المعين بخطّ عموديّ وآخر أفقيّ، تنتج لدينا أربع مثلّثات: متساوية الساقين، ومتطابقة.

عند وضع المعين في دائرة، لن تلامس الدائرة جميع أضلاع المعين.

يحمل المعين جميع خواص متوازي الأضلاع، بالإضافة إلى هذه الخصائص:

 ويمكن تمثيل المساحة عن طريق حسابات المثلث بالقانون الآتي:

كلاهما أشكال رباعية؛ فالمربع هو شكل رباعي، والمعين هو أيضًا شكل رباعي الأضلاع.

Report this page